Combination of Slotted Quartz Tube Flame Atomic Absorption Spectrometry and Dispersive Liquid-Liquid Microextraction for the Trace Determination of Silver in Electroplating Rinse Bath


Terzioğlu D., DALGIÇ BOZYİĞİT G., Fırat Ayyıldız M., Chormey D. S., BAKIRDERE S.

ANALYTICAL LETTERS, cilt.54, sa.5, ss.761-771, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 54 Sayı: 5
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1080/00032719.2020.1780603
  • Dergi Adı: ANALYTICAL LETTERS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Food Science & Technology Abstracts, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.761-771
  • Anahtar Kelimeler: Dispersive liquid-liquid microextraction (DLLME), flame atomic absorption spectrometry (FAAS), silver, slotted quartz tube (SQT), STRIPPING VOLTAMMETRY, EXTRACTION, IONS, PRECONCENTRATION, SEPARATION, NANOPARTICLES, WATER
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

Although flame atomic absorption spectrometry (FAAS) is hindered by its low sensitivity for most elements, it remains a widely used analytical technique in most laboratories. This study was aimed at mitigating the low sensitivity of an FAAS system by using dispersive liquid-liquid microextraction (DLLME) to enrich silver from aqueous solution, and enhance absorbance signals with the help of a slotted quartz tube (SQT). Three major optimization steps were carried for parameters of complexation (silver-dithizone), DLLME method and SQT apparatus. The optimum parameters/variables obtained were applied to aqueous standard solutions, and the developed calibration plots were used to validate the different systems studied. The optimized method (DLLME-SQT-FAAS) recorded an enhancement factor of 98, which correlates to detection and quantification limits of 0.60 mu g/L and 2.0 mu g/L, respectively. The optimized method was applied to an electroplating rinse solution, and close to 100% recovery results were obtained for different spiked concentrations. These results establish that the developed method can be applied to complex samples for accurate quantification of silver.