Materials, cilt.18, sa.17, 2025 (SCI-Expanded)
The aim of this study is to evaluate the effect of various lubrication systems (dry cutting, MQL, and nano-MQL) on the machinability of AISI 1040 medium-carbon steel. By dispersing titanium carbide (TiC) nanoparticles into environmentally friendly sunflower oil, a new type of nano-MQL fluid was developed. Machinability parameters such as surface finish, cutting force, energy consumption, chip structure, and tool degradation were examined through scanning electron microscopy (SEM). Based on experimental observations, the use of the nano-MQL technique led to a notable enhancement in machining performance when compared to both dry and traditional MQL machining. In addition, surface roughness was substantially reduced with the nano-MQL, suggesting more effective lubrication and cooling. Reductions in cutting forces and energy consumption were also observed, indicating more efficient material removal and lower mechanical resistance. The SEM examination of the cutting tools proved the low wear rate of the nano-MQL, which exhibited less adhesion and more abrasion wear, and of dry cutting, which showed the most serious wear. Furthermore, chip morphology illustrations indicated that the chips of nano-MQL were relatively uniform and segmented, indicating superior chip breaking quality and cutting stability. The results suggest that employing TiC nanoparticles in MQL offers a clear enhancement of cutting performance in terms of process efficiency, surface quality, and tool wear. These results validate the capability of nano-MQL as an environmentally friendly and high-performance lubrication method for turning medium-carbon steels, supporting more sustainable and efficient manufacturing operations.