Bulletin of the Korean Mathematical Society, cilt.61, sa.1, ss.83-92, 2024 (SCI-Expanded)
Let R be a commutative ring with nonzero identity and M be an R-module. In this paper, we first introduce the concept of S-idempotent element of R. Then we give a relation between S-idempotents of R and clopen sets of S-Zariski topology. After that we define S-pure ideal which is a generalization of the notion of pure ideal. In fact, every pure ideal is S-pure but the converse may not be true. Afterwards, we show that there is a relation between S-pure ideals of R and closed sets of S-Zariski topology that are stable under generalization.